
LECTURE 19 e AS A LIMIT AND INVERSE TRIGONOMETRIC FUNCTIONS

Theorem.
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Proof. The proof may be a little top-to-bottom, as in, pretty tricky. We don't start with the limit as stated.
Instead, we try to show
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Noting that ln (x) is a continuous function, we can de�nitely write the LHS as (by de�nition of continuity,
ln (limx→a x) = limx→a ln (x))

ln
(
lim
x→0

(1 + x)
1
x

)
= lim
x→0

ln (1 + x)
1
x

= lim
x→0

ln (1 + x)

x

This starts to look like a derivative, by adding a new term ln (1) = 0,
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and we are done. �

Example. Evaluate the limit limx→0 (1 + 2x)
1
x .

Solution. Certainly, we want to make use of the theorem. How? The idea is to make sure the 2x here
matches with the exponent as 1

2x , by doing some tricks. Note that
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Thus,
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Example. Show that limn→∞
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Solution. One can replace n by y. Then,
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Inverse Trigonometric Functions

When we invert a function, we must be careful of where the original function might have �at slopes. For
example, f (x) = x2 is not invertible at the point x = 0 because it has a �at tangent line there (�ipping
it about the origin gives an in�nite slope for the �ipped point). The same rationale goes for trigonometric
functions.

One strategy is to identify part of the domain that makes the function �one-to-one�, i.e. given an output,
it can only come from one input. For example, f (x) = x2 on (−∞,∞) is NOT one-to-one in the sense that,
given an output value 16, we have two points ±4 that can get you this value. However, f (x) = x2 on (0,∞)
IS one-to-one since now for each function value, you can only �nd one input to map to it.

One-to-one functions are invertible on their respective domains.
Similary, for f (x) = sin (x), we �nd that the interval

[
−π2 ,

π
2

]
that sin (x) is one-to-one. Then sin (x) is

invertible, and its inverse is called sin−1 (x). Here we collect a table of results on where the trigonometric
function is one-to-one:

Functions Domain Range

sin (x)
[
−π2 ,

π
2

]
[−1, 1]

cos (x) [0, π] [−1, 1]
tan (x)

[
−π2 ,

π
2

]
(−∞,∞)

cot (x) [0, π] (−∞,∞)
sec (x) [0, π2 ) ∪ (π2 , π] (−∞,−1] ∪ [1,∞)
csc (x) [−π2 , 0) ∪ (0, π2 ] (−∞,−1] ∪ [1,∞)

The corresponding inverse functions thus have the domain and range �ipped.
Now, back to derivatives. Since sin−1 (x) has domain [−1, 1], its derivative is only de�ned there. It

naturally shows up in its expression.
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, |x| < 1.

Also, since tan−1 (x) has domain (−∞,∞), its derivative is de�ned everywhere.
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Let's use the same triangle method to �nd d
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)
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The next few are also interesting.
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